
The Arithmetic-Geometric Mean

Rowan Parker

The University of Sheffield
2013–2014

Table of Contents

An Introduction 1
1. The Arithmetic-Geometric Mean 1
2. Elliptic Integrals 4
3. The Gamma & Beta Functions 14
4. Elliptic Integrals Continued 16
5. An Algorithm for π 26
6. Computation 31
References 33
Appendix 33

1

An Introduction

This project, as its title suggests, focuses on the arithmetic-geometric
mean. Often abbreviated as AGM, it is an iteration on two numbers using
the arithmetic and geometric means. Generally referred to as just the mean
or average, the sum of two numbers divided by two is actually the arithmetic
mean. The geometric mean is the square root of the two numbers multiplied
together. As David Cox said in his paper on the subject [2]:

‘This [the AGM] first appeared in a paper of Lagrange, but
it was Gauss who really discovered the amazing depth of this
subject.’

He continues to say that the majority of Gauss’ work was published after his
death (as Werke, see [3]). Although they will not be covered in this project,
Gauss also worked on a complex AGM.

French mathematician Legendre developed many of the ideas on elliptic
integrals. Their name arose because one such integral gives the arc length
of an ellipse — an example of this is demonstrated in Section 2. These
types of integrals were the first types that mathematicians could not solve
analytically, hence their relationship with the AGM.

An important application of the AGM, which is the application we cover,
is its use in computing π. One algorithm in particular will be covered,
but there are many more detailed in Borwein and Borwien [1]. To further
this application, there will be a more detailed look at computing π using a
program written by the author.

1. The Arithmetic-Geometric Mean

Given two non-negative numbers a and b, the arithmetic mean and geo-
metric mean are given respectively by

a + b
2

and
√
ab. (1)

For example, if we have a = 8 and b = 2, then the arithmetic mean is 8+2
2 = 5

and the geometric mean is
√

8 × 2 = 4. The arithmetic-geometric mean is
related to these two means and much of the underlying theory for this section
is in Cox [2].

Let a0 = a and b0 = b, with a ⩾ b > 0, and define the recursion:

an+1 =
an + bn

2
and bn+1 =

√
anbn. (2)

Note that bn+1 should always be the positive square root. This just means
that both an and bn are sequences and it is straightforward to see that a1
and b1 are the arithmetic and geometric means of a and b, that a2 and b2
are the respective means of a1 and b1, and so on. As we prove later, both
sequences an and bn have a common limit, which is the AGM.

2

Definition 1.1. The arithmetic-geometric mean M is defined by

M(a, b) = lim
n→∞

an = lim
n→∞

bn,

where an and bn are given in (2) and n ∈ {0,1, . . .}.

Looking at an example may assist in understanding the concept. The
initial values, of a = 25 and b = 4, for the example below have been chosen
at random.

Example 1.2. Calculate M(25,4).

Solution. The following table shows the first four iterations of an and bn as
defined above in Definition 1.1.

i ai bi
0 25 4
1 14.5 10
2 12.25 12.04159
3 12.14579 12.14535
4 12.14557 12.14557

Intuitively, both sequences look to be approaching a similar value as n in-
creases. This value, which is the AGM, appears to be around 12.146. (Note
that no rounding has been applied when displaying the above table.)

The two sequences in Example 1.2 do actually converge to a common
limit (rather than just appearing to). It can be proven that the sequences
an and bn converge for any initial values for a and b, not just for a = 25 and
b = 4, and this leads to our first theorem.

Theorem 1.3. For any a ⩾ b ⩾ 0, the arithmetic-geometric mean M(a, b)
exists.

Proof. The standard inequality for arithmetic and geometric means states
that

a + b
2

⩾
√
ab.

This tells us that ai ⩾ bi for any i ∈ {0,1, . . .}. Letting i = n and i = n + 1
gives

an ⩾ bn and an+1 ⩾ bn+1.

Since an ⩾ bn, this produces

an ⩾
an + bn

2
and

√
anbn ⩾ bn.

Using (2), we can write,

an ⩾
an + bn

2
= an+1 ⩾ bn+1 =

√
anbn ⩾ bn

Ô⇒ an ⩾ an+1 ⩾ bn+1 ⩾ bn. (3)

This leads to

a ⩾ a1 ⩾ ⋯ ⩾ an ⩾ an+1 ⩾ bn+1 ⩾ bn ⩾ ⋯ ⩾ b1 ⩾ b.

3

Therefore, both an and bn are bounded so, the limits lim
n→∞

an and lim
n→∞

bn

exist. The next step is to show that these limits are equal. So, from (3), we
have

−bn+1 ⩽ −bn.

Adding an+1 produces

an+1 − bn+1 ⩽ an+1 − bn

which, using (3), leads to

an+1 − bn+1 ⩽
an + bn

2
− bn

Ô⇒ an+1 − bn+1 ⩽
1

2
(an − bn) .

Then, we can write

an − bn ⩽
1

2
(an−1 − bn−1)

and iterate to give

1

2
(an−1 − bn−1) ⩽

1

22
(an−2 − bn−2) ⩽ ⋯ ⩽ 1

2n
(a0 − b0) .

Therefore,

an − bn ⩽
1

2n
(a0 − b0) .

Now, take the limit as n→∞
lim
n→∞

an − lim
n→∞

bn ⩽ 0,

and since an ⩾ bn for any n,

lim
n→∞

an − lim
n→∞

bn = 0.

This proves that lim
n→∞

an = lim
n→∞

bn and, therefore, that M(a, b) exists. �

Therefore, we know the AGM exists. Now, it is useful to look at how
quickly the AGM iteration converges.

Corollary 1.4. The arithmetic-geometric mean converges quadratically.

Proof. Using (2),

an+1 − bn+1 =
an + bn

2
−
√
anbn

= 1

2
(
√
an −

√
bn)

2

= 1

2
(an − bn√

an +
√
bn

)
2

,

and since b0 ⩽ bn ⩽ an,

an+1 − bn+1 ⩽
1

2
(an − bn

2
√
b0

)
2

.

4

Then,

an+1 − bn+1 ⩽
1

8b0
(an − bn)2

and therefore, the AGM converges quadratically. �

There are four basic properties of the AGM included. The first two prop-
erties are trivial and the second two are important for later sections.

Proposition 1.5. Given two real numbers a > b > 0:

(a) M(a, a) = a,
(b) M(a,0) = 0,
(c) M(a, b) =M(a1, b1) =M(a2, b2) = ⋯ ,
(d) M(λa,λb) = λM(a, b) for any λ > 0 ∈ R.

The proofs of these properties are omitted, but are hopefully clear when
looking at Definition 1.1.

2. Elliptic Integrals

The relationship between the arithmetic-geometric mean and elliptic inte-
grals was of great interest to nineteenth century mathematicians [2]. Elliptic
integrals originated from attempts to calculate the arc length of ellipses and
the next result is perhaps the most important to this project.

Theorem 2.1. For any two real numbers a ⩾ b > 0,

I(a, b) = ∫
π/2

0

dφ√
a2 cos2 φ + b2 sin2 φ

= π
2

1

M(a, b)
.

Proof. The first step is to prove that

I(a, b) = I(a1, b1).
Let us introduce a new variable θ such that

sinφ = 2a sin θ

(a + b) + (a − b) sin2 θ
. (4)

The limits on the integral remain unchanged, since 0 ⩽ θ ⩽ π
2 corresponds

to 0 ⩽ φ ⩽ π
2 . This substitution was first used by Gauss [3], and we need to

show that

cosφ = 2 cos θ
√
a12 cos2 θ + b12 sin2 θ

(a + b) + (a − b) sin2 θ
, (5)

where a1 and b1 are the arithmetic and geometric means of a and b as defined
in (2). By squaring (4), we have an expression for cos2 φ:

cos2 φ = 1 − sin2 φ = 1 − 4a2 sin2 θ

[(a + b) + (a − b) sin2 θ]2
.

To make the calculations simpler, let us set

cos2 φ = N

[(a + b) + (a − b) sin2 θ]2
,

5

where

N = [(a + b) + (a − b) sin2 θ]2 − 4a2 sin2 θ.

Rearranging (2), with a = a0 and b = b0, gives

4ab = 4b1
2 and a2 − 2ab + b2 = 4(a12 − b12). (6)

We can expand N to give

N = (a + b)2 − 2(a2 + b2)(1 − cos2 θ) + (a − b)2 (1 − cos2 θ)2

= (a + b)2 − 2(a2 + b2) + 2 cos2 θ(a2 + b2)
+ (a − b)2 (1 − 2 cos2 θ + cos4 θ)

= (a + b)2 − 2(a2 + b2) + 2(a2 + b2) cos2 θ

+ (a − b)2 − 2(a − b)2 cos2 θ + (a − b)2 cos4 θ

= 2 [(a2 + b2) − (a − b)2] cos2 θ + (a − b)2 cos4 θ

= cos2 θ [4ab + (a2 − 2ab + b2) cos2 θ]
= cos2 θ [4ab + (a2 − 2ab + b2)(1 − sin2 θ)]

and, by using (6),

N = 4 cos2 θ [b12 + (a12 − b12)(1 − sin2 θ)]
= 4 cos2 θ [a12(1 − sin2 θ) + b12 sin2 θ] .

Therefore,

N = 4 cos2 θ [a12 cos2 θ + b12 sin2 θ] ,

which is what we required in (5).
Now we need to show that

√
a2 cos2 φ + b2 sin2 φ = a(a + b) − (a − b) sin2 θ

(a + b) + (a − b) sin2 θ
. (7)

Denote the square of the left-hand side of (7) by A, that is

A = a2 cos2 φ + b2 sin2 φ = a2 − (a2 − b2) sin2 φ.

Substituting sinφ as in (4) produces

A = a2 − (a2 − b2)(2a sin θ

(a + b) + (a − b) sin2 θ
)
2

= a2
⎛
⎝

1 − 4(a2 − b2) sin2 θ

[(a + b) + (a − b) sin2 θ]2
⎞
⎠

= a2
⎛
⎝
(a + b)2 − 2(a2 − b2) sin2 θ + (a − b)2 sin4 θ

[(a + b) + (a − b) sin2 θ]2
⎞
⎠

= a2
⎛
⎝
[(a + b) − (a − b) sin2 θ]2

[(a + b) + (a − b) sin2 θ]2
⎞
⎠

.

6

This can be rewritten as

A = (a(a + b) − (a − b) sin2 θ

(a + b) + (a − b) sin2 θ
)
2

,

which agrees with (7).
Differentiating (4) explicitly gives

cosφ dφ =
2a cos θ [(a + b) + (a − b) sin2 θ] − 4a(a − b) sin2 θ cos θ

[(a + b) + (a − b) sin2 θ]2
dθ

=
2a cos θ [(a + b) + (a − b) sin2 θ − 2(a − b) sin2 θ]

[(a + b) + (a − b) sin2 θ]2
dθ ,

which simplifies to

cosφ dφ =
2a cos θ [(a + b) − (a − b) sin2 θ]

[(a + b) + (a − b) sin2 θ]2
dθ .

Substituting cosφ as in (5) gives

2 cos θ
√
a12 cos2 θ + b12 sin2 θ

(a + b) + (a − b) sin2 θ
dφ =

2a cos θ [(a + b) − (a − b) sin2 θ]

[(a + b) + (a − b) sin2 θ]2
dθ .

This simplifies to

√
a12 cos2 θ + b12 sin2 θ dφ = a(a + b) − (a − b) sin2 θ

(a + b) + (a − b) sin2 θ
dθ ,

which, from (7), gives

1√
a2 cos2 φ + b2 sin2 φ

dφ = 1√
a12 cos2 θ + b12 sin2 θ

dθ .

Therefore, the integral can be rewritten as

I(a, b) = ∫
π/2

0

dθ√
a12 cos2 θ + b12 sin2 θ

,

which proves that I(a, b) = I(a1, b1). Iterating gives

I(a, b) = I(a1, b1) = I(a2, b2) = ⋯

such that

I(a, b) = lim
n→∞

I(an, bn) = I(µ,µ),

where µ =M(a, b). Then

I(µ,µ) = ∫
π/2

0

1

µ
dθ = π

2µ
.

Therefore,

I(a, b) = π
2

1

M(a, b)
as required. �

7

This theorem helps us to solve many integrals, and one such integral arose
from attempts to calculate the arc length of r2 = cos 2θ. This curve is known
as a lemniscate and it is plotted for 0 ⩽ θ ⩽ 2π.

Example 2.2. Calculate the arc length L of r2 = cos 2θ.

Solution. The standard formula for the arc length of a curve y(x) is given
by

∫
√

1 + (dydx)
2
dx . (8)

However, our curve is defined in polar coordinates so we need to make two
substitutions:

x = r cos θ and y = r sin θ.

Differentiating with respect to θ gives

dx

dθ
= dr
dθ

cos θ − r sin θ and
dy

dθ
= dr
dθ

sin θ − r cos θ. (9)

This allows us to write dy
dx in terms of r and θ which is

dy

dx
= dy

dθ
/dx
dθ

=
dr
dθ sin θ − r cos θ
dr
dθ cos θ − r sin θ

.

The radicand in (8) can then be rewritten in terms of r and θ:

1 + (dy
dx

)
2

=
(dr
dθ cos θ − r sin θ)2 − (dr

dθ sin θ − r cos θ)2

(dr
dθ cos θ − r sin θ)2

=
(dr
dθ

)2 + r2

(dr
dθ cos θ − r sin θ)2

.

The integral in (8) is now

∫
√

1 + (dydx)
2
dx = ∫

√
r2 + (dr

dθ
)2

dr
dθ cos θ − r sin θ

dx ,

and using dx
dθ in (9) produces

∫
√

1 + (dydx)
2
dx = ∫

√
r2 + (dr

dθ
)2 dθ .

8

We are calculating the arc length of r2 = cos 2θ between 0 and 2π. We
need dr

dθ , and differentiating explicitly with respect to θ gives

d

dθ
[r2] = d

dθ
[cos 2θ]

Ô⇒ 2r
dr

dθ
= −2 sin 2θ.

Squaring and substituting for r2 produces

(dr
dθ

)
2

= sin2 2θ

cos 2θ
.

This enables us to write

r2 + (dr
dθ

)
2

= cos 2θ + sin2 2θ

cos 2θ
= cos2 2θ + sin2 2θ

cos 2θ
,

which simplifies to

r2 + (dr
dθ

)
2

= 1

cos 2θ
.

We require the length of the curve between 0 and 2π but, if we look at
the plot of the lemniscate, it is clear that the curve repeats four times in
this interval. Therefore, we change the limits to 0 and π/2 and multiply the
integral by 4. Then, the arc length L is given by

L = 4∫
π/2

0

√
r2 + (dr

dθ
)2 dθ = 4∫

π/2

0

1√
cos 2θ

dθ . (10)

Now, introduce a new variable t, such that

cos 2θ = cos2 t. (11)

Differentiating (11) explicitly gives

−2 sin 2θ dθ = −2 cos t sin t dt

Ô⇒ dθ = cos t sin t

sin 2θ
dt .

Note that 0 ⩽ θ ⩽ π/2 corresponds to 0 ⩽ t ⩽ π/2, so the limits remain
unchanged. Continuing from (10) and (11) gives

L = 4∫
π/2

0

1√
cos2 t

dθ ,

and substituting for dθ produces

L = 4∫
π/2

0

sin t

sin 2θ
dt .

From (11), we can say

cos2 2θ = cos4 t,

and, therefore, that

sin2 2θ = 1 − cos4 t = (1 − cos2 t)(1 + cos2 t) = sin2 t (1 + cos2 t).

9

Then,

L = 4∫
π/2

0

sin t

sin t
√

1 + cos2 t
dt

= 4∫
π/2

0

dt√
2 cos2 t + sin2 t

.

This integral is just I (
√

2,1). Therefore

L = 2π

M (
√

2,1)

is the arc length of r2 = cos 2θ. For those interested, this evaluates to
approximately 5.24412.

There are two types of elliptic integral that we need. The integral K
below is the complete elliptic integral of the first kind and the integral E is
the complete elliptic integral of the second kind. These integrals are complete
because their limits are 0 and π/2. Be aware that some authors (such as
Cox [2]) use F rather than K. Also, note that incomplete versions of both
do exist and there is also an elliptic integral of the third kind, but it is not
covered by this project.

Definition 2.3. For any k ∈ [0,1), define K by

K(k) = ∫
π/2

0

dθ√
1 − k2 sin2 θ

.

And, for any k ∈ [0,1] define E by

E(k) = ∫
π/2

0

√
1 − k2 sin2 θ dθ .

Interestingly, K has a solution in terms of the AGM. As can be seen below,
this is because the integral I in Theorem 2.1 is just a modified form of the

complete integral of the first kind (specifically, where a = 1 and b =
√

1 − k2).
Unfortunately, there is not such a nice relation for E, the second kind.

Proposition 2.4. The integral K has the following solution in terms of the
arithmetic-geometric mean M :

K(k) = π
2

1

M(1 + k,1 − k)
.

Proof. By writing 1 as cos2 θ + sin2 θ, the integral K can be given as

∫
π/2

0

dθ√
cos2 θ + (1 − k2) sin2 θ

.

This is just I(1,
√

1 − k2), with I as in Theorem 2.1. Therefore,

K(k) = π
2

1

M(1 + k,1 − k)
.

The AGM can be rewritten since M(1+k,1−k) =M(1,
√

1 − k2), by Propo-
sition 1.5(c). �

10

It is useful to redefine the complete integrals of the first and second kind

in terms of a different parameter k′ =
√

1 − k2. These are known as comple-
mentary integrals and are denoted with a prime.

Definition 2.5. The complementary integrals K ′ and E′ are defined by

K ′(k) =K(
√

1 − k2) =K(k′)

and

E′(k) = E(
√

1 − k2) = E(k′),

where k′ =
√

1 − k2.

Sometimes, the parameter k is referred to as the modulus and k′ as the
complementary modulus [1]. There are some basic properties of K and E.

Proposition 2.6.

(a) K(0) = π
2
, (b) E(0) = π

2
, (c) E(1) = 1.

Proof.

(a) Using Proposition 2.4 produces

K(0) = π
2

1

M(1,1)
= π

2
.

(b) Using Definition 2.3 with k = 0 gives

E(0) = ∫
π/2

0

√
1 dθ = π

2
.

(c) Now with k = 1 gives

E(1) = ∫
π/2

0

√
1 − sin2 θ dθ = ∫

π/2

0
cos θ dθ = sin

π

2
= 1. �

The integrals K and E can be related by the differential of K (why this
is useful becomes clear in Theorem 4.1).

Proposition 2.7. The differential of K with respect to k, denoted by K̇, is:

K̇ = E − k′2K
kk′2

where K =K(k) and E = E(k).

Proof. The easiest proof of this uses the series expansions for K and E. Part
of this involves calculating integrals of arbitrary powers of sine. So, let

Sn = ∫
π/2

0
sinn θ dθ = ∫

π/2

0
sinn−1 θ sin θ dθ ,

where n is a non-negative integer. Using integration by parts, we can then
write

Sn = [− sinn−1 θ cos θ]
π/2

0

+ ∫
π/2

0
(n − 1) sinn−2 θ cos2 θ dθ .

11

Since cos π2 = 0 = sin 0, the first term evaluates to zero. Then cos2 θ can be
rewritten to produce

Sn = ∫
π/2

0
(n − 1) sinn−2 θ (1 − sin2 θ) dθ

= (n − 1) [∫
π/2

0
sinn−2 θ dθ −∫

π/2

0
sinn θ dθ]

= (n − 1)[Sn−2 − Sn].

Rearranging gives

Sn = (n − 1

n
)Sn−2, (12)

where S0 = ∫
π/2
0 dθ = π

2 and S1 = ∫
π/2
0 sin θ dθ = 1.

First, we will calculate the series expansion for K. So, Definition 2.3
states that

K(k) = ∫
π/2

0
(1 − k2 sin2 θ)−1/2 dθ .

This integral can be expanded using the binomial theorem (which states

that (1 + x)n = ∑∞r=0
n(n−1)⋯(n−r+1)

r! xr). Therefore,

K(k) = ∫
π/2

0

⎡⎢⎢⎢⎢⎣
1 +

(−1
2
)

1!
(−k2 sin2 θ)1 +

(−1
2
) (−3

2
)

2!
(−k2 sin2 θ)2

+
(−1

2
) (−3

2
) (−5

2
)

3!
(−k2 sin2 θ)3 +⋯

⎤⎥⎥⎥⎥⎦
dθ

= ∫
π/2

0

⎡⎢⎢⎢⎢⎣
1 + 1

2 × 1!
(k2 sin2 θ)1 + 1 × 3

22 × 2!
(k2 sin2 θ)2

+ 1 × 3 × 5

23 × 3!
(k2 sin2 θ)3 +⋯

⎤⎥⎥⎥⎥⎦
dθ

= ∫
π/2

0
[
∞

∑
r=0

(2r − 1)!!
2r r!

(k2 sin2 θ)r]dθ ,

where (2r − 1)!! = 1 × 3 × 5 × ⋯ × (2r − 1) is a double factorial. Taking the
summation out of the integral leaves

K(k) =
∞

∑
r=0

(2r − 1)!!
2r r!

k2r ∫
π/2

0
sin2r θ dθ =

∞

∑
r=0

(2r − 1)!!
2r r!

k2r S2r.

Using (12), we know that S0 = π
2 , and we can see that S2 = 1

2S0 = 1
2×1

π
2 .

Also, S4 = 3
4S2 =

3
2×2

1
2×1

π
2 and S6 = 5

6S4 =
5

2×3
3

2×2
1

2×1
π
2 . So, we can calculate

any S2r using the following formula:

S2r =
(2r − 1) × (2r − 3) ×⋯ × 1

(2 × r) × (2 × r − 1) ×⋯ × (2 × 1)
π

2
= (2r − 1)!!

2r r!

π

2
. (13)

12

Therefore,

K(k) =
∞

∑
r=0

(2r − 1)!!
2r r!

k2r
(2r − 1)!!

2r r!

π

2

Ô⇒ K(k) = π
2

∞

∑
r=0

[(2r − 1)!!
2r r!

]
2

k2r. (14)

We also need K̇ = dK
dk . We do not differentiate K as in defined in Def-

inition 2.3 since it is much simpler to differentiate the series above. So,
differentiating (14) with respect to k gives

K̇(k) = π
2

∞

∑
r=0

[(2r − 1)!!
2r r!

]
2

2r k2r−1. (15)

Using a similar method, we need to calculate the series expansion for E.
Therefore, Definition 2.3 states that

E(k) = ∫
π/2

0
(1 − k2 sin2 θ)1/2 dθ ,

and using binomial expansion gives

E(k) = ∫
π/2

0

⎡⎢⎢⎢⎢⎣
1 +

(1
2
)

1!
(−k2 sin2 θ)1 +

(1
2
) (−1

2
)

2!
(−k2 sin2 θ)2

+
(1
2
) (−1

2
) (−3

2
)

3!
(−k2 sin2 θ)3 +⋯

⎤⎥⎥⎥⎥⎦
dθ .

Then, rearranging and introducing a double factorial produces

E(k) = ∫
π/2

0

⎡⎢⎢⎢⎢⎣
1 − 1

2 × 1!
(k2 sin2 θ)1 − 1 × 1

22 × 2!
(k2 sin2 θ)2

− 1 × 1 × 3

23 × 3!
(k2 sin2 θ)3 −⋯

⎤⎥⎥⎥⎥⎦
dθ

= ∫
π/2

0
[1 −

∞

∑
r=1

(2r − 3)!!
2r r!

(k2 sin2 θ)r]dθ

= ∫
π/2

0
[1 −

∞

∑
r=1

(2r − 1)!!
2r r!

1

2r − 1
(k2 sin2 θ)r]dθ .

Note that −1!! = 1 (not −1) so
(2r−1)!!
2r−1 = 1×3×⋯×(2r−3)×(2r−1)

2r−1 = (2r − 3)!!. This
allows us to rewrite the summation in a way that is similar to the series for
K. Then, rearranging gives

E(k) = ∫
π/2

0
1 dθ −

∞

∑
r=1

(2r − 1)!!
2r r!

k2r

2r − 1
∫

π/2

0
sin2r θ dθ

= π
2
−

∞

∑
r=1

(2r − 1)!!
2r r!

k2r

2r − 1
S2r.

13

Using (13) produces

E(k) = π
2
−

∞

∑
r=1

(2r − 1)!!
2r r!

k2r

2r − 1

(2r − 1)!!
2r r!

π

2

Ô⇒ E(k) = π
2

⎛
⎝

1 −
∞

∑
r=1

[(2r − 1)!!
2r r!

]
2
k2r

2r − 1

⎞
⎠

. (16)

We are proving that K̇ = (E − k′2K)/kk′2, which can be rearranged to

kk′
2
K̇ = E − k′2K and substituting for k′ gives

(k − k3)K̇ = E − (1 − k2)K. (17)

Denote the coefficient of k2n in the left-hand side and right-hand side of the
above equation by L and R respectively. Showing that L = R for an arbitrary
power of k proves the proposition. For ease of writing, C(ka) denotes the
coefficient of ka. So, we have

L = C(k2n) in (kK̇ − k3K̇) = [C(k2n−1) in K̇] − [C(k2n−3) in K̇] .

Now, using (15), the coefficient of k2n−1 is when r = n and the coefficient of
k2n−3 is when r = n − 1. Therefore,

L = π
2
[(2n − 1)!!

2n n!
]
2

2n − π

2
[(2n − 3)!!

2n−1 (n − 1)!
]
2

2(n − 1).

Using (2n − 3)!! = (2n − 1)!!/(2n − 1) and (n − 1)! = n!/n allows us to write:

(2n − 3)!!
2n−1 (n − 1)!

= (2n − 1)!!
2n n!

2n

(2n − 1)
.

Then,

L = π
2
[(2n − 1)!!

2n n!
]
2

2n − π

2
[(2n − 1)!!

2n n!
]
2 (2n)2

(2n − 1)2

= π
2
[(2n − 1)!!

2n n!
]
2

[2n − (2n)2 2(n − 1)
(2n − 1)2

] ,

which leads to

L = π
2
[(2n − 1)!!

2n n!
]
2

2n

(2n − 1)2
. (18)

Similarly,

R = C(k2n) in (E −K + k2K)
= [C(k2n) in E] − [C(k2n) in K] + [C(k2n−2) in K] .

Using (16), the coefficient of k2n is when r = n. And using (14), the coeffi-
cient of k2n and k2n−2 is when r = n and r = n − 1 respectively. Therefore,

R = −π
2
[(2n − 1)!!

2n n!
]
2

1

2n − 1
− π

2
[(2n − 1)!!

2n n!
]
2

+ π

2
[(2n − 3)!!

2n−1 (n − 1)!
]
2

= π
2
[(2n − 1)!!

2n n!
]
2

[− 1

2n − 1
− 1 + (2n)2

(2n − 1)2
] .

14

Then rearranging gives

R = π
2
[(2n − 1)!!

2n n!
]
2

2n

(2n − 1)2
,

which agrees with (18). Therefore, this proves the proposition. �

3. The Gamma & Beta Functions

This section may appear out of place, but certain values of k in K and E
have a solution which can be expressed in terms of the gamma function. It
is defined below along with the beta function.

Definition 3.1. The gamma function is defined by

Γ(x) = ∫
∞

0
tx−1e−t dt ,

where R(x) > 0.

Definition 3.2. The beta function is defined by

B(x, y) = ∫
1

0
tx−1(1 − t)y−1 dt ,

where R(x),R(y) > 0.

The following two theorems, and their proofs, are taken from Titchmarsh
[5]. The first theorem relates the gamma function to itself (it allows us to
show the common result Γ(x) = (x − 1)!) and the second redefines the beta
function in terms of gamma.

Theorem 3.3. For any R(x) > 0,

Γ(x + 1) = xΓ(x).

Proof. From Definition 3.1, we have

Γ(x + 1) = ∫
∞

0
txe−t dt .

Integration by parts produces

Γ(x + 1) = [− txe−t]
∞

0

+ ∫
∞

0
x tx−1e−t dt .

The first term evaluates to zero and therefore,

Γ(x + 1) = x∫
∞

0
tx−1e−t dt = xΓ(x),

as required. �

Theorem 3.4. The beta function is also given by

B(x, y) = Γ(x)Γ(y)
Γ(x + y)

where R(x),R(y) > 0.

15

Proof. Using Definition 3.1, we can write

Γ(x)Γ(y) = ∫
∞

0
tx−1e−t dt∫

∞

0
sy−1e−s ds

= ∫
∞

0
∫

∞

0
e−t−stx−1sy−1 dt ds .

Now let t = uv and let s = u(1 − v). Then dt = udv and ds = −du. The first
integral’s limits remain unchanged since 0 ⩽ t ⩽ ∞ corresponds to 0 ⩽ u < ∞.
For the second, 0 ⩽ s < ∞ corresponds to 1 ⩾ v ⩾ 0 (since s is inversely
proportional to v). Therefore,

Γ(x)Γ(y) = ∫
∞

u=0
∫

0

v=1
−e−u(uv)x−1(u[1 − v])y−1ududv

= ∫
∞

0
e−uux+y−1 du∫

1

0
vx−1(1 − v)y−1 dv

Using Definition 3.1 and Definition 3.2 leads to

Γ(x)Γ(y) = Γ(x + y)B(x, y),
which proves the result. �

A useful relation between sine and the gamma function, which was first
devised by Euler [4], is included below.

Theorem 3.5. Euler’s reflection formula is given by

Γ(x)Γ(1 − x) = π

sinπx
,

where 0 < x < 1.

This proof relies on some assumptions which are outside the scope of this
project. Namely, that

sin (πx) = πx
∞

∏
n=1

(1 − x
2

n2
) , (19)

1

Γ(x)
= xeγx

∞

∏
n=1

(1 + x
n
) e−x/n, (20)

where γ ≈ 0.5772156649 is Euler’s constant. The proof, and these assump-
tions, are covered in Havil [4].

Proof. Using (20),

1

Γ(x)
1

Γ(−x)
= [xeγx

∞

∏
n=1

(1 + x
n
) e−x/n] [−xe−γx

∞

∏
n=1

(1 − x
n
) ex/n]

= −x2eγxe−γx
∞

∏
n=1

(1 + x
n
)(1 − x

n
) e−x/nex/n

= −x2
∞

∏
n=1

(1 − x
2

n2
) .

From Theorem 3.3, we can write Γ(1 − x) = −xΓ(−x). Then,

1

Γ(x)
1

Γ(1 − x)
= x

∞

∏
n=1

(1 − x
2

n2
) .

16

Therefore, using (19) produces

1

Γ(x)
1

Γ(1 − x)
= sinπx

π
,

as required. �

For Theorem 4.4 in the next section, we need to calculate the gamma
function at two specific values of x.

Proposition 3.6.

(a) Γ(1

2
) =

√
π,

(b) Γ(1

4
)Γ(3

4
) =

√
2π.

Proof. For (a), let x = 1
2 in Theorem 3.5 which produces Γ2 (1

2
) = π. For (b),

the result follows directly by letting x = 1
4 . �

4. Elliptic Integrals Continued

Before we can approach an algorithm relating π and the AGM, we need
to look further at elliptic integrals. More specifically, we are interested in
how K and E relate to each other and how we can solve specific integrals
using the gamma function. The following theorem appears in Borwein and
Borwein [1].

Theorem 4.1. For any k ∈ (0,1):

(a) K(k) = 1

1 + k
K(2

√
k

1 + k
) ,

(b) K(k) = 2

1 + k′
K(1 − k′

1 + k′
) ,

(c) E(k) = 1 + k
2

E(2
√
k

1 + k
) + k

′2

2
K(k),

(d) E(k) = (1 + k′)E(1 − k′

1 + k′
) − k′K(k).

Proof.

(a) Using Proposition 2.4 we can write

K(k) = I(1 + k,1 − k),

and using Proposition 1.5(d),

K(k) = 1

1 + k
I (1,

1 − k
1 + k

) . (21)

Note that I(1+k,1−k) = I (1,
√

1 − k2) since 1 and
√

1 − k2 are, respec-

tively, the arithmetic and geometric means of 1+k and 1−k. Therefore,

17

we can write

K (2
√
k

1 + k
) = I

⎛
⎜⎜
⎝

1,

¿
ÁÁÁÀ1 − (2

√
k

1 + k
)
2⎞
⎟⎟
⎠

= I
⎛
⎜
⎝

1,

¿
ÁÁÀ(1 + k)2 − 4k

(1 + k)2
⎞
⎟
⎠
= I

⎛
⎜
⎝

1,

¿
ÁÁÀ(1 − k)2

(1 + k)2
⎞
⎟
⎠

.

Now, multiplying by 1
1+k produces

1

1 + k
K (2

√
k

1 + k
) = 1

1 + k
I (1,

1 − k
1 + k

) . (22)

Combining (21) with (22) proves the result.

(b) Similarly, we can write

K(k) = I (1,
√

1 − k2) = I(1, k′), (23)

where k′ =
√

1 − k2 as before. Then, using (21) produces

K (1 − k′

1 + k′
) = p I(1, q)

where

p = 1

1 + 1−k′

1+k′

= 1 + k′

2
and q =

1 − 1−k′

1+k′

1 + 1−k′

1+k′

= k′.

Now, dividing by p gives

2

1 + k′
K (1 − k′

1 + k′
) = I(1, k′). (24)

Combining (23) with (24) proves the result.

(c) Let g(k) and its differential be as follows:

g = 2
√
k

1 + k
and ġ = 1 − k√

k(1 + k)2
.

Then, from (a) we have

(1 + k)K(k) =K(g),

which differentiates (with respect to k) to produce

K(k) + (1 + k) K̇(k) = ġ K̇(g)

Ô⇒ K(k) + (1 + k) K̇(k) = 1 − k√
k(1 + k)2

K̇(g). (25)

Rearranging Proposition 2.7 gives

E(k) = kk′2K̇(k) + k′2K(k), (26)

and with k = g,

E(g) = gg′2K̇(g) + g′2K(g). (27)

18

Note that

g′
2 = 1 − g2 = 1 − 4k

(1 + k)2
= (1 − k

1 + k
)
2

.

Then, if we take (26) − 1+k
2 (27):

E(k) − 1+k
2 E(g) = kk′2K̇(k) + k′2K(k)

− 1+k
2 gg′

2
K̇(g) − 1+k

2 g′
2
K(g)

= kk′2K̇(k) + k′2K(k)

−
√
k (1−k

1+k
)2 K̇(g) − (1−k)

2

2(1+k)K(g).

Now, from (a), we can rewrite the following:

(1−k)2

2(1+k)K(g) = (1−k)
2

2 K(k).

Therefore,

E(k) − 1+k
2 E(g) = kk′2K̇(k) + k′2K(k)

−
√
k (1−k

1+k
)2 K̇(g) − (1−k)

2

2 K(k),

and using (25),

E(k) − 1+k
2 E(g) = kk′2K̇(k) + k′2K(k) − (1−k)

2

2 K(k)

−
√
k (1−k

1+k
)2
√

k(1+k)2

1−k
[K(k) + (1 + k) K̇(k)]

= kk′2K̇(k) + k′2K(k) − (1−k)
2

2 K(k)

− k(1 − k)K(k) − k(1 − k)(1 + k)K̇(k).

Since k(1 − k)(1 + k) = k(1 − k2) = kk′2, the first and the last term give

a zero coefficient for K̇. This leaves:

E(k) − 1+k
2 E(g) =K(k) [k′2 − (1−k)

2

2 − k(1 − k)]

=K(k) [(1 − k2) − 1−2k+k2

2 − k + k2]

=K(k) [12 −
k2

2] .

Finally, substituting for g(k) and since 1 − k2 = k′2, then

E(k) − 1 + k
2

E (2
√
k

1 + k
) = k

′2

2
K(k),

as required.

19

(d) Let h = 1−k′

1+k′ . (Incidentally, h is actually the inverse of g.) Then, substi-
tuting k = h in (c) gives:

E(h) = 1 + h
2

E (2
√
h

1 + h
) + h

′2

2
K(h)

=
1 + 1−k′

1+k′

2
E

⎛
⎜
⎝

2
√

1−k′

1+k′

1 + 1−k′

1+k′

⎞
⎟
⎠
+ h

′2

2
K (1 − k′

1 + k′
)

= 1

1 + k′
E (

√
1 − k′2) + h

′2

2
K (1 − k′

1 + k′
) ,

where

h′
2

2
= 1 − h2

2
= 1

2

⎡⎢⎢⎢⎢⎣
1 − (1 − k′

1 + k′
)
2⎤⎥⎥⎥⎥⎦

= 2k′

(1 + k′)2
.

Therefore,

E(h) = 1

1 + k′
E(k) + 2k′

(1 + k′)2
K (1 − k′

1 + k′
) ,

and using (b) gives

E(h) = 1

1 + k′
E(k) + 2k′

(1 + k′)2
1 + k′

2
K(k)

= 1

1 + k′
E(k) + k′

1 + k′
K(k).

Multiplying through by 1 + k′ and substituting for h(k) produces

(1 + k′)E (1 − k′

1 + k′
) = E(k) + k′K(k),

which is what we required. �

The integral I (defined in Theorem 2.1) and similar integral J (defined
below) both relate to E and K. This is expected given that we saw in
Proposition 2.4 how K has a solution in terms of the AGM.

Proposition 4.2. If

J(a, b) = ∫
π/2

0

√
a2 cos2 θ + b2 sin2 θ dθ = aE′ (b

a
)

I(a, b) = ∫
π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

= 1

a
K ′ (b

a
) ,

then

2J(an+1, bn+1) − J(an, bn) = anbn I(an, bn).

20

Proof. First we need to show that J(a, b) = aE′ (b
a
). So,

J(a, b) = ∫
π/2

0

√
a2 cos2 θ + b2 sin2 θ dθ

= a∫
π/2

0

√
cos2 θ + b2

a2
sin2 θ dθ

= a∫
π/2

0

√
1 + (1 − b2

a2
) sin2 θ dθ .

Using Definition 2.3 and then Definition 2.5, we can write

J(a, b) = aE (
√

1 − b2

a2
) = aE′ (b

a
) . (28)

Similarly, we need to show that I(a, b) = 1
a K

′ (b
a
). So,

I(a, b) = ∫
π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

= 1

a
∫

π/2

0

dθ
√

1 + (1 − b2

a2
) sin2 θ

.

Therefore,

I(a, b) = 1

a
K (

√
1 − b2

a2
) = 1

a
K ′ (b

a
) . (29)

Let cn
2 = an2 − bn2. Then set kn = cn/an and so

kn
′ =

¿
ÁÁÀ1 − cn

2

bn
2
=

¿
ÁÁÀan2 − (an2 − bn2)

an2
= bn
an

.

Now, from Theorem 4.1,

E(kn) = (1 + kn′)E (1 − kn′

1 + kn′
) − kn′K(kn)

Ô⇒ E (cn
an

) = (1 + bn
an

) E (an − bn
an + bn

) − bn
an

K (cn
an

) .

Multiplying through by an gives

anE (cn
an

) = (an + bn)E (an − bn
an + bn

) − bnK (cn
an

) .

Note that an−bn
an+bn

= cn+1
an+1

and that an + bn = 2an+1. Therefore,

anE (cn
an

) = 2an+1E (cn+1
an+1

) − anbnK (cn
an

) .

Since E(k′) = E′(k) and K(k′) =K ′(k), we can write

anE (cn
an

) = 2an+1E (cn+1
an+1

) − anbnK (cn
an

) .

Finally, using (28) and (29) produces

2J(an+1, bn+1) − J(an, bn) = anbn I(an, bn),
as required. �

21

This theorem gives a more direct relation for K and E (previously, we
could only relate them as in Theorem 4.1).

Theorem 4.3. For a = 1 and b = k′ ∈ (0,1],

E(k) = (1 −
∞

∑
n=0

2n−1cn
2) K(k),

where cn
2 = an2 − bn2.

Proof. Using (2),

cn
2 = an2 − bn2 = −(an + bn)2 + 2an

2 + 2anbn

= −4an+1
2 + 2an

2 + 2anbn,

therefore,

anbn =
1

2
(cn2 + 4an+1

2 − 2an
2) . (30)

From Proposition 4.2,

2J(an+1, bn+1) − J(an, bn) = anbn I(an, bn),

and using (30) gives,

2J(an+1, bn+1) − J(an, bn) =
1

2
[cn2 + 4an+1

2 − 2an
2] I(an, bn).

Collecting similar indexes of a and b produces

2 [J(an+1, bn+1) − an+12 I(an, bn)]

− [J(an, bn) − an2 I(an, bn)] = 1

2
cn

2 I(an, bn),

and multiplying by 2n gives

2n+1 [J(an+1, bn+1) − an+12 I(an, bn)] (31)

−2n [J(an, bn) − an2 I(an, bn)] = 2n−1cn
2 I(an, bn).

Note that we can rewrite I(an, bn) as I(a0, b0) by Theorem 2.1. Now, by
summing the left-hand side of (31) from n = 1 to n = ∞:

2 [J(a1, b1) − a12 I(a0, b0)] − 1 [J(a0, b0) − a02 I(a0, b0)]
+4 [J(a2, b2) − a22 I(a0, b0)] − 2 [J(a1, b1) − a12 I(a0, b0)]
+8 [J(a3, b3) − a32 I(a0, b0)] − 4 [J(a2, b2) − a22 I(a0, b0)]
⋮

+2n [J(an, bn) − an2 I(a0, b0)] − 2n−1 [J(an−1, bn−1) − an−12 I(a0, b0)] .

It can be seen that many terms cancel out leaving only:

−[J(a0, b0) − a02 I(a0, b0)] . (32)

22

To justify this, let

∆n = 2n [an2 I(an, bn) − J(an, bn)]

= 2n∫
π/2

0

an
2 − (an2 cos2 θ + bn2 sin2 θ)
√
an2 cos2 θ + bn2 sin2 θ

dθ

= 2n∫
π/2

0

(an2 − bn2) sin2 θ
√
an2 cos2 θ + bn2 sin2 θ

dθ

= 2n cn
2∫

π/2

0

sin2 θ√
an2 cos2 θ + bn2 sin2 θ

dθ .

Since 0 ⩽ sin2 θ ⩽ 1, we can write 0 ⩽ ∆n ⩽ 2n cn
2 I(an, bn) and then observe

that ∆n → 0 as n→∞. Now, summing the right-hand side of (31) produces

∞

∑
n=0

2n−1cn
2 I(a0, b0),

and equating with (32) gives

∞

∑
n=0

2n−1cn
2 I(a0, b0) = −J(a0, b0) + a02 I(a0, b0)

Ô⇒ J(a0, b0) = (a02 −
∞

∑
n=0

2n−1cn
2) I(a0, b0).

From Proposition 4.2, this can be rewritten as

a0E
′ (b0
a0

) = (a02 −
∞

∑
n=0

2n−1cn
2) 1

a0
K ′ (b0

a0
) ,

and since a0 = a = 1 and b0 = b = k′,

E′(k′) = (1 −
∞

∑
n=0

2n−1cn
2) K ′(k′).

Finally, using Proposition 2.4 gives

E(k) = (1 −
∞

∑
n=0

2n−1cn
2) K(k).

as required. �

We need the value for K and E at 1/
√

2 to enable us to calculate the
result given in Corollary 4.5. These results both involve the gamma function
discussed in the previous section.

Theorem 4.4.

(a) K (1√
2
) =

Γ2(1
4
)

4
√
π

,

(b) E (1√
2
) =

4 Γ2(3
4
) + Γ2(1

4
)

8
√
π

.

23

Proof.

(a) From Definition 2.3 with k = 1/
√

2, we have

K (1√
2
) = ∫

π/2

0

dθ
√

1 − 1
2 sin2 θ

.

Let t = sin θ then dt
dθ = cos θ =

√
1 − t2. Note the limits change since

0 ⩽ θ ⩽ π
2 corresponds to 0 ⩽ t ⩽ 1. Therefore,

K (1√
2
) = ∫

1

0

1
√

1 − 1
2 t

2

dt√
1 − t2

=
√

2∫
1

0

dt√
(2 − t2) (1 − t2)

.

Now let t2 = 2x2

1 + x2
, and differentiate explicitly:

t dt = 2x

(1 + x2)2
dx

Ô⇒
√

2x√
1 + x2

dt = 2x

(1 + x2)2
dx

Ô⇒ dt =
√

2

(1 + x)3/2
dx .

Note that 0 ⩽ t ⩽ 1 corresponds to 0 ⩽ x ⩽ 1, so the limits remain
unchanged. Then,

K (1√
2
) =

√
2∫

1

0

dt
√

(1 − 2x2

1+x2
) (2 − 2x2

1+x2
)

=
√

2∫
1

0

dt
√

(1−x2

1+x2
) (2

1+x2
)

=
√

2∫
1

0

dt
√

2

(1+x2)2

√
1 − x2

= ∫
1

0

dt

(1 + x2)−1
√

1 − x2
.

And, substituting for dt produces

K (1√
2
) = ∫

1

0

1

(1 + x2)−1
√

1 − x2

√
2

(1 + x2)3/2
dx

=
√

2∫
1

0

dx√
1 + x2

√
1 − x2

=
√

2∫
1

0

dx√
1 − x4

. (33)

24

Then, let u = x4 so du
dx = 4x3 = 4u3/4. The limits remain unchanged since

0 ⩽ x ⩽ 1 corresponds to 0 ⩽ u ⩽ 1. Therefore,

K (1√
2
) =

√
2∫

1

0

1√
1 − u

1

4u3/4
du

=
√

2

4
∫

1

0
u−3/4(1 − u)−1/2 du .

Definition 3.2, with x = 1
4 and y = 1

2 , produces

K (1√
2
) =

√
2

4
B(1

4
,
1

2
) ,

and using Theorem 3.5 gives

K (1√
2
) =

√
2

4

Γ(1
4
)Γ(1

2
)

Γ(3
4
)

.

However, Proposition 3.6 tells us that

Γ(3

4
) =

√
2π

Γ(1
4
)

and Γ(1

2
) =

√
π.

Therefore,

K (1√
2
) =

√
2

4

Γ(1
4
)
√
π

√
2π/Γ(1

4
)

Ô⇒ K (1√
2
) =

Γ2(1
4
)

4
√
π

.

(b) From Definition 2.3 with k = 1/
√

2, we have

E (1√
2
) = ∫

π/2

0

√
1 − 1

2 sin2 θ dθ .

As before, let t = sin θ then dt
dθ =

√
1 − t2. The limits change in the same

way. Then

E (1√
2
) = ∫

1

0

√
1 − 1

2 t
2 dθ

= ∫
1

0

√
1 − 1

2 t
2

√
1 − t2

dt .

Now let t2 = 1 − u2 (which can be rearranged to 1
2 +

1
2u

2 = 1 − 1
2 t

2) and
differentiate explicitly:

2t
dt

du
= −2u

Ô⇒ dt

du
= −u√

1 − u2
.

25

Note that 0 ⩽ t ⩽ 1 corresponds to 1 ⩾ u ⩾ 0, so the limits do change.
Therefore,

E (1√
2
) = ∫

0

u=1

√
1
2 +

1
2u

2

u
dt = ∫

0

1
−

√
1
2 (1 + u2)
√

1 − u2
du ,

and multiplying by 1 =
√

1 + u2/
√

1 + u2 gives

E (1√
2
) = 1√

2
∫

1

0

√
1 + u2√
1 − u2

√
1 + u2√
1 + u2

du

= 1√
2
∫

1

0

1 + u2√
1 − u4

du

= 1√
2
[∫

1

0

1√
1 − u4

du+∫
1

0

u2√
1 − u4

du] .

The first integral in the above equation can be simplified using (33) to
give

E (1√
2
) = 1√

2
[1√

2
K (1√

2
) + ∫

1

0

u2√
1 − u4

du] . (34)

We know the value of K (1/
√

2), so we just need to solve the remaining

integral. Therefore, let x = u4 then dx
du = 4x3/4 as in part (a) above. Now,

we have

∫
1

0

u2√
1 − u4

du = ∫
1

0

√
x√

1 − x
du

= ∫
1

0

√
x√

1 − x
dx

4x3/4

= 1

4
∫

1

0
x−1/4(1 − x)−1/2 dx .

By using Definition 3.2 and Theorem 3.5, this leads to

∫
1

0

u2√
1 − u4

du = 1

4
B(3

4
,
1

2
) =

Γ(3
4
) Γ(1

2
)

4 Γ(5
4
)

.

From Theorem 3.3 and Proposition 3.6, we can write

Γ(5

4
) = 1

4
Γ(1

4
) =

√
2π

4 Γ(3
4
)

and Γ(1

2
) =

√
π.

Therefore,

∫
1

0

u2√
1 − u4

du =
Γ2(3

4
)
√
π

√
2π

=
Γ2(3

4
)

√
2
√
π

.

Continuing from (34), and by using part (a), produces

E (1√
2
) = 1√

2

⎡⎢⎢⎢⎣

1√
2
K (1√

2
) +

Γ2(3
4
)

√
2
√
π

⎤⎥⎥⎥⎦

= 1

2

⎡⎢⎢⎢⎣

Γ2(1
4
)

4
√
π

+
Γ2(3

4
)

√
π

⎤⎥⎥⎥⎦
.

26

Simplifying gives

E (1√
2
) =

Γ2(1
4
) + 4 Γ2(3

4
)

8
√
π

,

which proves the result. �

The two statements in the theorem above can be used to give a value for
π in terms of elliptic integrals.

Corollary 4.5.

K (1√
2
)[2E (1√

2
) −K (1√

2
)] = π

2

Proof. From Theorem 4.4, we know that

K (1
√

2
) [2E (1

√

2
) −K (1

√

2
)] =

Γ2(1
4
)

4
√
π

⎡⎢⎢⎢⎣

4 Γ2(3
4
) + Γ2(1

4
)

4
√
π

−
Γ2(1

4
)

4
√
π

⎤⎥⎥⎥⎦

=
Γ2(1

4
)

4
√
π

Γ2(3
4
)

√
π

= 1

4π
[Γ(1

4
)Γ(3

4
)]

2

.

Using Proposition 3.6(b) produces

K (1√
2
)[2E (1√

2
) −K (1√

2
)] = 1

4π
[
√

2π]
2
= π

2
,

as required. �

The above corollary demonstrates a specific case of what is known as
Legendre’s relation. It states that

K(k) [2E(k) −K(k)] = π
2

is true for any k ∈ (0,1), not just for k = 1/
√

2. The proof of this relation is
in Borwein and Borwein [1].

5. An Algorithm for π

We now have all the necessary ingredients to produce an algorithm that
computes π. This algorithm and the resulting corollaries are taken from
Borwein and Borwein [1].

Algorithm 5.1. Let a0 = 1 and b0 = 1/
√

2. Define

πn =
2an+1

2

1 −∑nk=0 2kck2
,

where cn
2 = an2 − bn2. Then, πn increases monotonically to π.

27

Proof. Corollary 4.5 states

π

2
=K(2E −K),

where K =K(1/
√

2) and E = E(1/
√

2). Then, using Theorem 4.3 gives

π

2
=K [2(1 −

∞

∑
n=0

2n−1cn
2)K −K]

=K2 [(2 −
∞

∑
n=0

2ncn
2) − 1]

=K2 [1 −
∞

∑
n=0

2ncn
2] .

Proposition 2.4 tells us that

K = π

2M(1,1/
√

2)
,

which allows us to write

π

2
= π2

4M2(1,1/
√

2)
[1 −

∞

∑
n=0

2ncn
2] .

Rearranging gives

π =
2M2(1,1/

√
2)

1 −∑∞n=0 2ncn2
. (35)

If we truncate the infinite series at n and note that an+1
2 ≈M2(1,1/

√
2) for

large values of n, then we can write

πn =
2an+1

2

1 −∑nk=0 2kck2
.

Now we need to prove πn increases monotonically to π. For clarity, denote
the following summation by Σm:

Σm =
m

∑
k=0

2kck
2.

Then, from Algorithm 5.1, we know that

πn =
2an+1

2

1 −Σn
and πn+1 =

2an+2
2

1 −Σn+1
.

Now, take their difference to give

πn+1 − πn =
2an+2

2

1 −Σn+1
− 2an+1

2

1 −Σn

=
2an+2

2 (1 −Σn) − 2an+1
2 (1 −Σn+1)

(1 −Σn+1) (1 −Σn)
. (36)

Since an+1 ⩾ an+2, we can write

πn+1 − πn ⩾
2an+2

2 (Σn+1 −Σn)
(1 −Σn+1) (1 −Σn)

= an+2
2 2n+2 cn+1

2

(1 −Σn+1) (1 −Σn)
.

28

Now, since (1 −Σn+1)(1 −Σn) ⩽ (1 −Σn)2, we can write

πn+1 − πn ⩾
an+2

2 2n+2 cn+1
2

(1 −Σn)2
.

Then, it is trivial to see that πn+1 − πn ⩾ 0 and therefore that πn increases
monotonically. From (35), we can see that πn increases to π. �

The following corollary gives an upper bound for πn+1 − πn, that is the
difference between two consecutive iterations of the algorithm.

Corollary 5.2. In Algorithm 5.1,

πn+1 − πn ⩽
2n cn+1

2 π2

M2(1,1/
√

2)
.

Proof. Equation (36) from the proof above states

πn+1 − πn =
2an+2

2 (1 −Σn) − 2an+1
2 (1 −Σn+1)

(1 −Σn+1) (1 −Σn)
.

Now, since (1 −Σn+1)(1 −Σn) ⩾ (1 −Σ∞)2, we can write

πn+1 − πn ⩽
2an+2

2 (1 −Σn) − 2an+1
2 (1 −Σn+1)

(1 −Σ∞)2
.

Then, since an+2 ⩽ an+1,

πn+1 − πn ⩽
2an+1

2 [(1 −Σn) − (1 −Σn+1)]
(1 −Σ∞)2

=
2an+1

2 [Σn+1 −Σn]
(1 −Σ∞)2

.

Observing that Σn+1 = Σn + 2n+1 cn+1
2, we can write

πn+1 − πn ⩽
2an+1

2 2n+1 cn+1
2

(1 −Σ∞)2
.

From (35), we have

π =
2M2(1,1/

√
2)

(1 −Σ∞)
,

which rearranges to

(1 −Σ∞)2 =
4M4(1,1/

√
2)

π2
.

Substituting this leads to

πn+1 − πn ⩽
2an+1

2 2n+1 cn+1
2 π2

4M4(1,1/
√

2)
= an+1

2 2n cn+1
2 π2

M4(1,1/
√

2)
.

29

In the proof of Algorithm 5.1, we approximated M2(1,1/
√

2) by an+1
2 and

we shall do the same here. This gives

πn+1 − πn ⩽
M2(1,1/

√
2) 2n cn+1

2 π2

M4(1,1/
√

2)
= 2n cn+1

2 π2

M2(1,1/
√

2)
,

as required. �

This corollary gives an upper bound for π − πn, that is the difference
between an iteration and the true value of π. It can be used to calculate the
number of correct digits in πn — in fact, the script in the next section uses
this corollary to do exactly that.

Corollary 5.3. In Algorithm 5.1,

π − πn ⩽
π2 2n+4 exp{−π2n+1}

M2(1,1/
√

2)
.

This proof assumes the following statement:

lim
n→∞

2−n log (4an
cn

) = π
2

M(1, k′)
M(1, k)

. (37)

The details of which are covered in Borwein and Borwein [1]. These details
make use of Jacobi’s theta functions — which is beyond on the scope of this
project.

Proof. From (37), we can say

lim
n→∞

21−n log (4an
cn

) = π

because M(1, k′) =M(1, k) when k = k′ = 1/
√

2. Then, further rearranging
produces

lim
n→∞

(4an
cn

)
21−n

= eπ,

and taking reciprocals gives

lim
n→∞

(cn
4an

)
2n−1

= e−π.

By substituting n + 1 for n, we can write

lim
n→∞

(cn+1
4an+1

)
2−n

= e−π.

Dividing through by e−π gives

lim
n→∞

(cn+1
4an+1

)
2−n

/e−π = 1,

and, by raising to the power of 2n+1,

lim
n→∞

(cn+1
4an+1

)
2

/e−π 2n+1 = 1.

30

Then, for large enough n, we can say

cn+1
2

4an+1
2
/e−π 2n+1 ⩽ 1,

which, because each variable is positive, rearranges to

cn+1
2 ⩽ 16an+1

2 e−π 2n+1 .

Using the fact that 16an+1
2 ⩽ 16a1

2, we can say that 16an+1
2 ⩽ 12 — which

we can say because 16a1
2 = 6 + 4

√
2 ≈ 11.66. Therefore,

cn+1
2 ⩽ 12e−π 2n+1 . (38)

Now, because πn increases monotonically and the AGM converges quadrat-
ically (see Corollary 1.4), we can write

πj+2 − πj+1 ⩽ 1
4 (πj+1 − πj) ,

for some non-negative integer j. Hence, we can say

πn+2 − πn ⩽ 5
4 (πn+1 − πn) ,

πn+3 − πn ⩽ 21
16 (πn+1 − πn) ,

πn+4 − πn ⩽ 85
64 (πn+1 − πn) ,

⋮
π − πn ⩽ 4

3 (πn+1 − πn) . (39)

Corollary 5.2 states that

πn+1 − πn ⩽
2n cn+1

2 π2

M2(1,1/
√

2)
,

and combining with (39) produces

π − πn ⩽
4

3

2n cn+1
2 π2

M2(1,1/
√

2)
.

Finally, using (38) with the above gives

π − πn ⩽ 12
4

3

2n cn+1
2 π2

M2(1,1/
√

2)
= 2n+4 cn+1

2 π2

M2(1,1/
√

2)
,

as required. �

As Example 6.2 shows in the next section, the first four iterations of the
algorithm produce the following values:

n πn

0 2.91
1 3.14
2 3.1415926
3 3.141592653589793238

.

Since the algorithm converges quadratically, the correct number of digits
increases very quickly. Shown below are the first ten iterations of the algo-
rithm and the number of correct digits they produce:

iteration 0 1 2 3 4 5 6 7 8 9
digits 0 3 8 19 41 84 171 345 694 1392

.

31

Although this project covers just one algorithm that uses the AGM, there
are many more included in Borwein and Borwein [1]. Some of those covered
converge much quicker than ours, for instance, one has septic convergence
(meaning the number of correct digits multiplies by 7 each iteration).

To conclude, in this project, we have progressed from the origins of the
arithmetic-geometric mean to forming an algorithm for π. The understand-
ing of elliptic integrals and their relationship to both the AGM and the
gamma function was key to that progression. If I had more time, I would
like to look further into the algorithms referred to above as well an variation
of the AGM for complex numbers. In the next section I will discuss how I
applied the mathematics that I have learnt throughout this project in the
form of a computer script.

6. Computation

To support this project, I have written a script in the computer language
Python. The first function of the script calculates the AGM in the manner
described in Section 1 and the second function calculates π using Algo-
rithm 5.1, as described in the previous section. The two examples below
demonstrate this functionality. (The script’s source code is displayed in the
Appendix.)

Example 6.1. In Example 1.2, we calculated that the AGM of 25 and 4 is
approximately 12.146. We can calculate this more precisely using the script.
We give the script five arguments:

● agm, which selects the AGM calculation function;
● -p15, which sets the precision to 15 significant figures;
● -v, which turns verbosity on to print each iteration;
● 25, which is our value for a;
● 4, which is our value for b.

The command and its arguments are in bold font with the output displayed
below it. Note that i=n refers to the number of the current iteration.

./agm.py agm -p15 -v 25 4
-> i=0

a: 25
b: 4

-> i=2
a: 12.25
b: 12.0415945787923

-> i=4
a: 12.1455737881214
b: 12.1455737860650

agm: 12.1455737870932
prec: 15

-> i=1
a: 14.5
b: 10

-> i=3
a: 12.1457972893961
b: 12.1453502868466

-> i=5
a: 12.1455737870932
b: 12.1455737870932

.

As can be seen, the script required 5 iterations to reach the desired number
of significant figures (denoted by prec in the output).

32

The script can be run with any positive integer for the precision and shown
below is the AGM of the same two values calculated to 175 significant figures
(the -q option means that only the result will be printed).

./agm.py agm -p175 -q 25 4
12.145573787093180596731231914936101567487268959069102738009

6328008271239652669814211929120451790359070179185753696390
4793061298881553605552740386979811591631271353663828178629

Example 6.2. To calculate π, we give the script three arguments:

● pi, which selects the π calculation function;
● -v, which turns verbosity on like before;
● 3, which is our value for n — the number of iterations to perform.

As before, the command is in bold font, the script’s output is displayed
below it and i=n is the current iteration.

./agm.py pi -v 3
-> i=0

pi: 2.91
prec: 0

-> i=2
pi: 3.1415926

prec: 8

pi: 3.141592653589793238
prec: 19

-> i=1
pi: 3.14

prec: 3
-> i=3

pi: 3.141592653589793238
prec: 19

.

Similarly, we can run many more iterations to produce a value for π with a
higher precision. Here, there are seven iterations which produces 345 digits.

./agm.py pi 7
-> i=7

pi: 3.141592653589793238462643383279502884197169399375105
8209749445923078164062862089986280348253421170679821
4808651328230664709384460955058223172535940812848111
7450284102701938521105559644622948954930381964428810
9756659334461284756482337867831652712019091456485669
2346034861045432664821339360726024914127372458700660
631558817488152092096282925409171

prec: 345

Technical Details. The script makes use of Python’s decimal module
which allows for calculations requiring any number of significant figures. Be
aware that some calculations involving very high precisions could require
a long time to complete. For example, ten iterations of calculating π took
about 21 seconds to produce 2789 digits whereas eleven iterations took about
154 seconds to produce 5583 digits — this is roughly twice as many digits
but over seven times the time taken.

33

References

[1] J.M. Borwein and P.B. Borwein, Pi and the AGM, (Wiley-Interscience, 1987), 1–174.
[2] D.A. Cox, “The Arithmetic-Geometric Mean of Gauss,” L’Enseignement Mathé-

matique. 30 (1984), 275–330.
[3] C. F. Gauss, Werke, (Göttingen, 1876), 352–353.
[4] J. Havil, Gamma: Exploring Euler’s Constant, (Princeton University Press, 2003),

47–59.
[5] E.C. Titchmarsh, The Theory of Functions, Second Edition, (Oxford University Press,

1939), 55–56.

Appendix

Included here is the latest version of the script. (Latest means at time of
LATEX compilation — December 22, 2014 in this case.) Long lines are broken,
where the ‘Ç’ symbol indicates a break. A later version of the script may be
available at https://bitbucket.org/rowanparkeruk/agm and the
author can be reached at rowan@rowanparker.com.

3 # agm.py - Computes the arithmetic-geometric mean at any precision and uses it
4 # to calculate pi.
5 # Copyright (c) 2013-14 Rowan Parker (rowan at rowanparker dot com)
6 #
7 # Permission is hereby granted, free of charge, to any person obtaining a copy
8 # of this software and associated documentation files (the "Software"), to deal
9 # in the Software without restriction including without limitation the rights

10 # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 # copies of the Software, and to permit persons to whom the Software is
12 # furnished to do so, subject to the following conditions:
13 #
14 # The above copyright notice and this permission notice shall be included in
15 # all copies or substantial portions of the Software.
16 #
17 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM
22 # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 # SOFTWARE.
24
25 from __future__ import print_function
26 from decimal import *
27 import argparse
28 import sys
29
30 class AGM(object):
31 def __init__(self, precision=30, print_agm=True, print_errors=True, print_counts=True,

Ç print_steps=False, pi_mode=False):
32 if int(precision) < 1:
33 self.prec = 30
34 else:
35 self.prec = int(precision)
36 getcontext().rounding = ROUND_HALF_UP
37 getcontext().prec = self.prec + 2
38 self.print_agm = bool(print_agm)
39 self.print_errors = bool(print_errors)
40 self.print_steps = bool(print_steps)
41 self.print_counts = bool(print_counts)
42 self.pi_mode = bool(pi_mode)
43 def change_prec(self, precision):
44 if int(precision) > 2:
45 self.prec = int(precision)
46 else:
47 if self.print_errors:
48 print("FAIL: %s.change_prec(%s) returned false because the new precision was lower than

Ç 2." % (self.__class__.__name__, precision))

https://bitbucket.org/rowanparkeruk/agm
mailto:rowan@rowanparker.com

34

49 return False
50 getcontext().prec = self.prec + 2
51 return True
52 def decimal_validate(self, val):
53 try:
54 return Decimal(val)
55 except InvalidOperation:
56 a = val.split('ˆ')
57 if len(a) == 2:
58 t = [self.decimal_validate(a[0]), self.decimal_validate(a[1])]
59 if False in t:
60 return False
61 else:
62 return t[0]**t[1]
63 b = val.split('/')
64 if len(b) == 2:
65 t = [self.decimal_validate(b[0]), self.decimal_validate(b[1])]
66 if False in t:
67 return False
68 else:
69 return t[0]/t[1]
70 return False
71 def start(self, ai, bi):
72 if self.print_steps or self.print_counts:
73 print("->agm: started", end="\r")
74 a = self.decimal_validate(ai)
75 b = self.decimal_validate(bi)
76 if a > 0 and b > 0:
77 if a > b:
78 self.a = [a]
79 self.b = [b]
80 else:
81 self.a = [b]
82 self.b = [a]
83 if self.pi_mode:
84 self.csum = [getcontext().power(self.a[-1],2) - getcontext().power(self.b[-1],2)]
85 with localcontext() as ctx:
86 ctx.prec = self.prec
87 self.ap = [+self.a[-1]]
88 self.bp = [+self.b[-1]]
89 self.finished = False
90 self.iterate_print()
91 return True
92 else:
93 if self.print_errors:
94 print("FAIL: %s.start(%s, %s) returned false because of an error with a and/or b." %

Ç (self.__class__.__name__, ai, bi))
95 return False
96 def iterate(self):
97 if self.finished:
98 return False
99 if not self.a or not self.b:
100 if self.print_errors:
101 print("FAIL: %s.iterate() returned false because %s.a and/or %s.b were not set. Have

Ç you run %s.start() first?" % (self.__class__.__name__, self.__class__.__name__,
Ç self.__class__.__name__))

102 return False
103 am = (self.a[-1]+self.b[-1])/Decimal(2)
104 gm = (self.a[-1]*self.b[-1]).sqrt()
105 self.a.append(am)
106 self.b.append(gm)
107 if self.pi_mode:
108 t2k = getcontext().power(2, len(self.a)-1)
109 tcsq = (getcontext().power(self.a[-1],2) - getcontext().power(self.b[-1],2))
110 self.csum.append(self.csum[-1]+t2k*tcsq)
111 with localcontext() as ctx:
112 ctx.prec = self.prec
113 self.ap.append(+self.a[-1])
114 self.bp.append(+self.b[-1])
115 self.iterate_print()
116 if (self.a[-1] - self.b[-1]).adjusted() <= -self.prec:
117 self.finished = True
118 return True
119 def iterate_print(self):
120 if self.print_counts or self.print_steps:
121 print("-> i=%i" % (len(self.ap)-1), end=" "*30 + "\r")
122 if self.print_steps:
123 print("\n\t a: %s\n\t b: %s" % (self.ap[-1], self.bp[-1]))

35

124 if self.pi_mode:
125 print("\t\b\bcsum: %s" % self.csum[-1])
126 def answer(self):
127 if self.finished:
128 if self.print_agm:
129 if self.print_counts or self.print_steps:
130 print("\n agm: ", end="")
131 print(self.ap[-1])
132 if self.print_steps:
133 print(" prec: " + str(self.prec))
134 return self.ap[-1]
135 else:
136 if self.print_errors:
137 print("FAIL: %s.answer() returned false because %s.finished is false (the algorithm has

Ç not finished)." % (self.__class__.__name__, self.__class__.__name__))
138 return False
139 def calculate(self, a, b):
140 if not self.start(a, b):
141 return False
142 while not self.iterate():
143 pass
144 return self.answer()
145
146 class Pi(object):
147 def __init__(self, print_pi=True, print_errors=True, print_counts=True, print_steps=False,

Ç print_agm_steps=False):
148 self.print_pi = bool(print_pi)
149 self.print_errors = bool(print_errors)
150 self.print_steps = bool(print_steps)
151 self.print_counts = bool(print_counts)
152 self.print_agm_steps = bool(print_agm_steps)
153 self.agm = AGM(3, False, self.print_errors, self.print_counts, self.print_agm_steps, True)
154 def digits(self, n, pi=False, M=False):
155 if n % 1 != 0 or n < 0:
156 return False
157 if n == 0:
158 return 0
159 if not pi:
160 pi = Decimal('3.142')
161 if not M:
162 M = Decimal('0.8472')
163 a = 2*(getcontext().ln(pi)-getcontext().ln(M))
164 b = (n+4)*getcontext().ln(2)
165 c = pi*getcontext().power(2, n+1)
166 d = (a+b-c)/getcontext().ln(10)
167 return int(-d.to_integral_exact(rounding = ROUND_FLOOR))
168 def start(self, n):
169 if int(n) < 0:
170 if self.print_errors:
171 print("FAIL: %s.start(%s) returned false because n was not positive." %

Ç (self.__class__.__name__, n))
172 return False
173 else:
174 self.n = int(n)
175 guess_digits = self.digits(self.n)
176 if guess_digits < 3:
177 guess_digits += 3
178 getcontext().prec = guess_digits+2
179 getcontext().rounding = ROUND_HALF_UP
180 if not self.agm.change_prec(guess_digits+2):
181 return False
182 return self.agm.start(Decimal('1'), (Decimal('1')/Decimal('2')).sqrt())
183 def iterate(self):
184 self.agm.iterate()
185 self.iterate_print()
186 def iterate_print(self):
187 if self.print_steps:
188 if not self.print_agm_steps:
189 print()
190 print("\tpi: " + str(self.equation()))
191 print("\t\b\bprec: " + str(self.correct_digits))
192 def equation(self):
193 if not self.agm.csum:
194 return False
195 tn = getcontext().power(self.agm.a[-1] + self.agm.b[-1], 2)/Decimal('2')
196 td = 1 - self.agm.csum[-1]
197 pi = tn/td
198 self.correct_digits = self.digits(self.i, pi, self.agm.a[-1])

36

199 with localcontext() as ctx:
200 if self.correct_digits < 3:
201 ctx.prec = 3
202 else:
203 ctx.prec = self.correct_digits
204 return +pi
205 def answer(self):
206 if self.i == self.n:
207 pi = self.equation()
208 if self.print_pi:
209 if self.print_counts or self.print_steps:
210 print("\n pi: ", end="")
211 print(pi)
212 if self.print_counts or self.print_steps:
213 print(" prec: " + str(self.correct_digits))
214 return pi
215 else:
216 if self.print_errors:
217 print("FAIL: %s.answer() returned false because %s.i != %s.n (the algorithm has not

Ç finished)." % (self.__class__.__name__, self.__class__.__name__,
Ç self.__class__.__name__))

218 return False
219 def calculate(self, n):
220 if not self.start(n):
221 return False
222 self.i = 0
223 self.iterate_print()
224 for i in range(1, n+1):
225 self.i = i
226 self.iterate()
227 return self.answer()
228
229 def main():
230 parser = argparse.ArgumentParser(description="A script written to calculate the

Ç arithmetic-geometric mean to an arbitrary precision, and use it to calculate pi.")
231 subparsers = parser.add_subparsers(help="the script's function")
232 agm_parser = subparsers.add_parser('agm', help="calculate the arithmetic-geometic mean - use `agm

Ç -h` for more info")
233 agm_parser.add_argument("a", help="the first value - use / (a forward slash) for fractions and ˆ (a

Ç caret) for exponentials")
234 agm_parser.add_argument("b", help="the second value - same as first")
235 agm_parser.add_argument("-p", "--precision", help="change the precision to the positive integer P

Ç from the default value of 30", type=int, default=30, metavar='P')
236 agm_parser.add_argument("-v", "--verbose", help="print each step of the agm calculation",

Ç action="store_true")
237 agm_parser.add_argument("-q", "--quiet", help="surpress all output other than the result (and

Ç errors)", action="store_true")
238 agm_parser.set_defaults(func=do_agm)
239 pi_parser = subparsers.add_parser('pi', help="calculate pi - use `pi -h` for more info")
240 pi_parser.add_argument("n", help="the number of iterations to perform (the first iteration is

Ç n=0)", type=int)
241 pi_parser.add_argument("-v", "--verbose", help="print each step of the pi calculation",

Ç action="store_true")
242 pi_parser.add_argument("-vv", "--veryverbose", help="print each step of the pi and agm

Ç calculation", action="store_true")
243 pi_parser.add_argument("-q", "--quiet", help="surpress all output other than the result (and

Ç errors)", action="store_true")
244 pi_parser.set_defaults(func=do_pi)
245 args = parser.parse_args()
246 args.func(args)
247
248 def do_agm(args):
249 if args.quiet:
250 args.print_counts = False
251 args.verbose = False
252 else:
253 args.print_counts = True
254 agm = AGM(args.precision, True, True, args.print_counts, args.verbose, False)
255 agm.calculate(args.a, args.b)
256
257 def do_pi(args):
258 if args.veryverbose:
259 args.verbose = True
260 if args.quiet:
261 args.print_counts = False
262 args.verbose = False
263 args.veryverbose = False
264 else:

37

265 args.print_counts = True
266 pi = Pi(True, True, args.print_counts, args.verbose, args.veryverbose)
267 pi.calculate(args.n)
268
269 if __name__ == '__main__':
270 try:
271 main()
272 except KeyboardInterrupt:
273 print("\nInterrupted.")
274 exit()

	Table of Contents
	An Introduction
	1. The Arithmetic-Geometric Mean
	Definition 1.1
	Example 1.2
	Theorem 1.3
	Corollary 1.4
	Proposition 1.5

	2. Elliptic Integrals
	Theorem 2.1
	Example 2.2
	Definition 2.3
	Proposition 2.4
	Definition 2.5
	Proposition 2.6
	Proposition 2.7

	3. The Gamma & Beta Functions
	Definition 3.1
	Definition 3.2
	Theorem 3.3
	Theorem 3.4
	Theorem 3.5
	Proposition 3.6

	4. Elliptic Integrals Continued
	Theorem 4.1
	Proposition 4.2
	Theorem 4.3
	Theorem 4.4
	Corollary 4.5

	5. An Algorithm for Pi
	Algorithm 5.1
	Corollary 5.2
	Corollary 5.3

	6. Computation
	Example 6.1
	Example 6.2

	References
	Appendix

